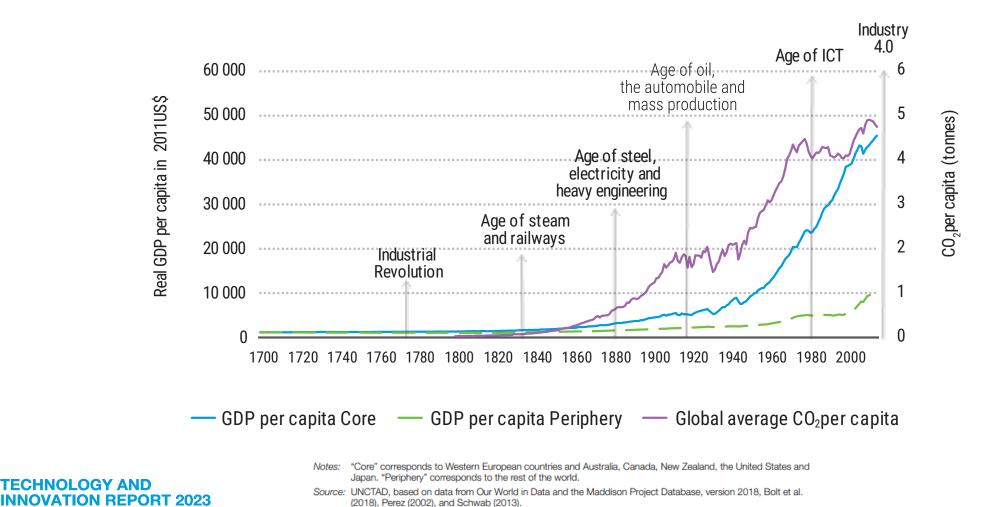

UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT

UNCTAD

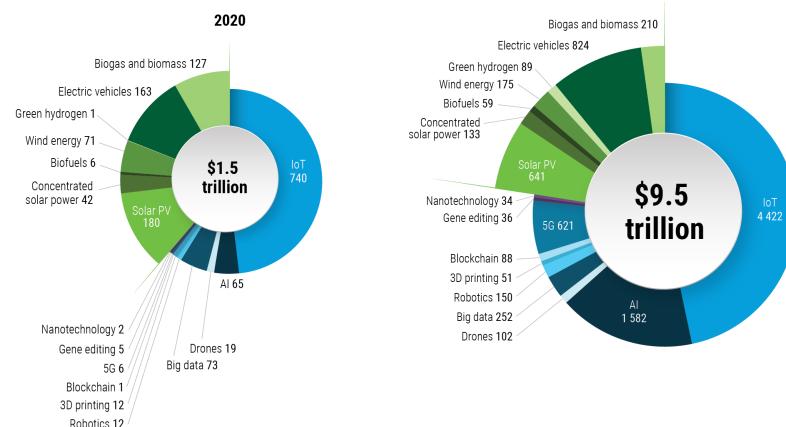
The Twin Transition for Global Value Chains: Key Findings and Recommendations for Asia and the Pacific

Mr. Angel González Sanz Head of Technology, Innovation and Knowledge Development Branch UNCTAD



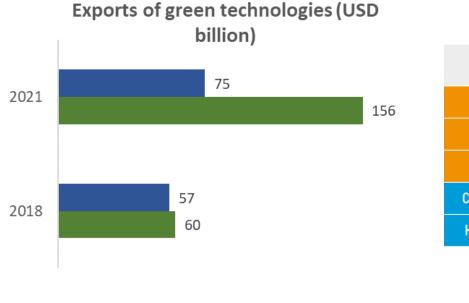
OPENING GREEN WINDOWS Technological opportunities for a low-carbon world

Developing countries must catch the green technological revolution early


The great divide, rise in CO2 per capita, and waves of technological change

There are enormous opportunities in the development of green frontier technologies

Market size estimates of frontier technologies, \$ billion


2030

Source: UNCTAD based on various estimates.

But so far, developed economies are seizing most of the opportunities

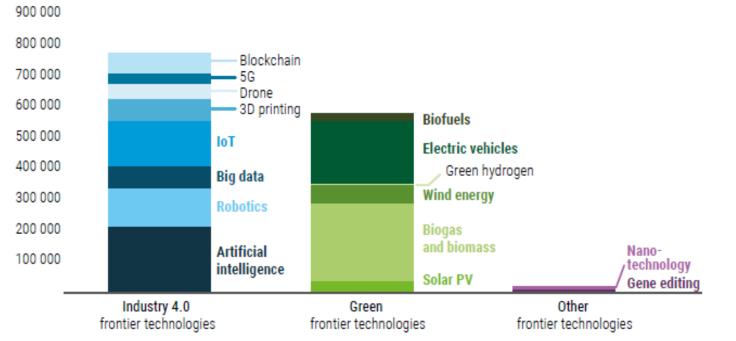
Developing countries
Developed countries

Top green frontier technology providers

Solar PV	Biofuels	Wind energy	Green hydrogen	Electric vehicles	Concentrated solar power	Biogas and biomass
Jinko Solar	Archer Daniels Midland	GE Power	Siemens Energy	Tesla	Abengoa Solar	Future Biogas
JA Solar	ALTEN Group	Mitsubishi Heavy Industries	Linde	Ford	Iberolica Group	Air Liquide
Trina Solar	Louis Dreyfus	ABB	Toshiba Energy	Hyundai	ENGIE	PlanET Biogas Global
Canadian Solar	Brasil Bio Fuels	Siemens Gamesa Renewable Energy	Air Liquide	Chevrolet	NextEra Energy Resources	Ameresco
Hanwa Q cells	BIOX Corp	Goldwind	Nel ASA	BYD	BrightSource Energy	Quantum Green
	Renewable Energy Group	Enercon	Air Products and Chemi- cals	Volkswagen		Envitech Biogas
	Wilmar international		Guangdong Nation-Synergy Hydro- gen Power Technologies	Renault-Nissan- Mitsubishi Alliance		Weltec Biopower

There is significant concentration of knowledge creation in terms of publications

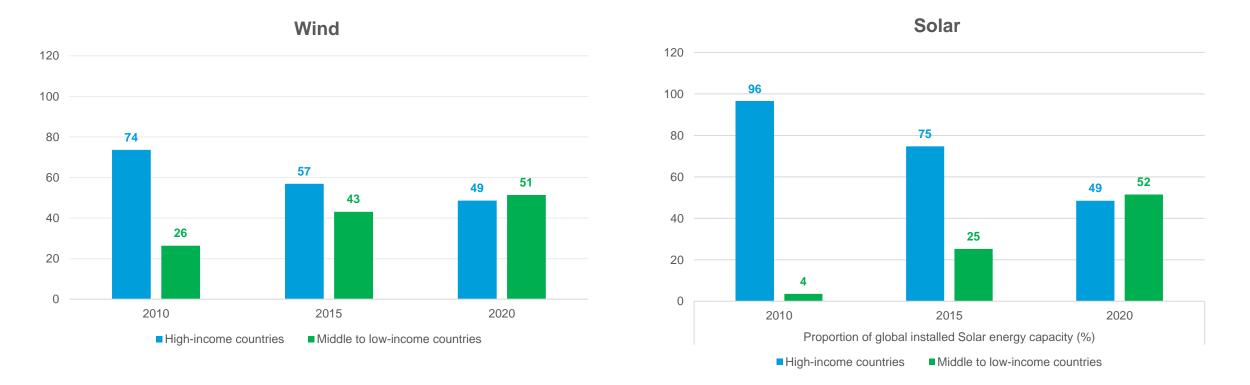
1 200 000 Blockchain 5G Drone 1 000 000 3D printing IoT 800 000 Big data Biofuels 600 000 Robotics Electric vehicles Green hydrogen 400 000 Wind energy Artificial Biogas intelligence Nano-200 000 and biomass technology Solar PV Gene editing Industry 4.0 Other Green frontier technologies frontier technologies frontier technologies


Source: UNCTAD calculations based on data from Scopus.

Number of publications on frontier technologies, 2000 - 2021

...and in terms of patents

Number of patents for frontier technologies, 2000 - 2021


Source: UNCTAD calculations based on data from PatSeer.

Installed capacity is expanding in middle- and low-income countries

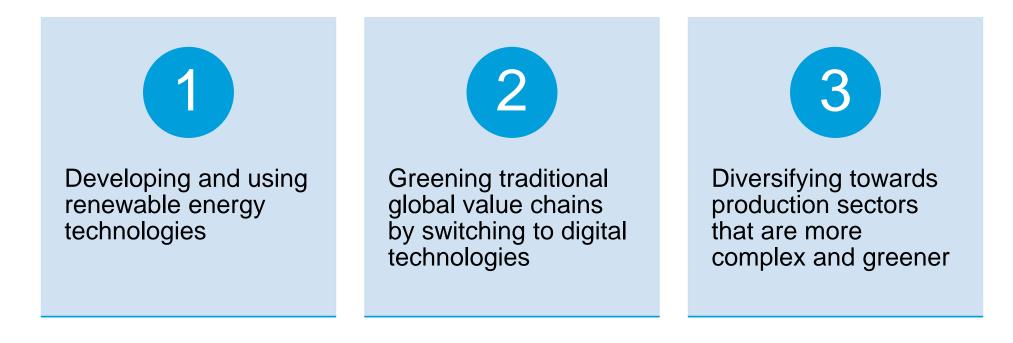
Installed renewable energy capacity by regions (percentage of world total)

OPENING GREEN WINDOWS Technological opportunities for a low-carbon world

Readiness index combining ICT, skills, R&D, industrial capacity and finance indicators

	Rank in 2022	Rank in 2021	Movement in rank	ICT ranking	Skills ranking	R&D ranking	Industry ranking	Finance ranking
	Top 10							
United States of America	1			11	18			2
Sweden	2							18
Singapore	3							17
Switzerland	4			21	13			5
Netherlands	5							31
Republic of Korea	6			15	26			7
Germany	7			24	17		12	40
Finland	8	17		22			20	30
China, Hong Kong SAR	9	15			23			1
Belgium	10	11	^	13	4		19	48
	Selected transition and developing economies							
Russian Federation	31	27		43	32		54	69
China	35	25		117	92			4
Brazil	40	41		50	55		51	57
India	46	43		95	109		22	75

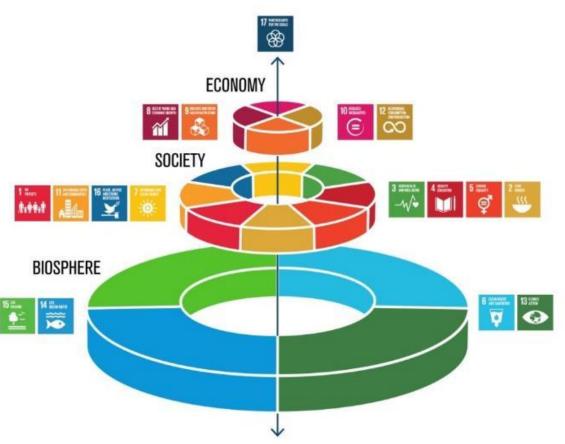
25

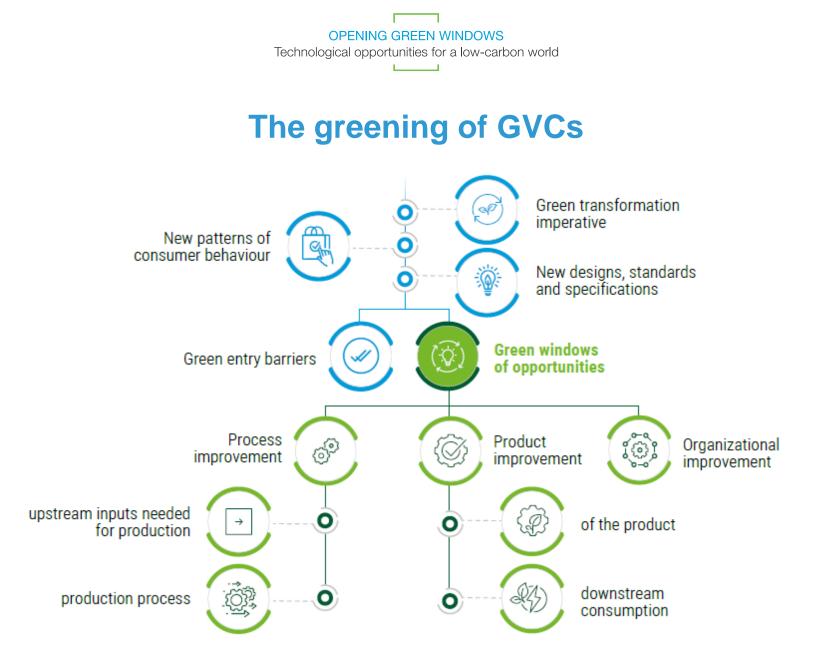

INNOVATION REPORT 2023

South Africa

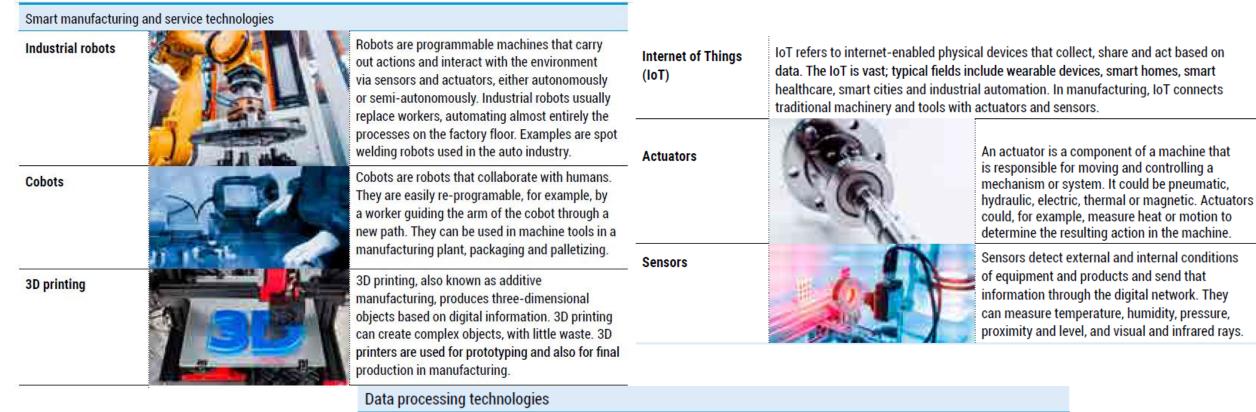
56

Paths to seize benefits from the green technological revolution


Global value chains (GVCs) have become the cornerstone of the world economic system



Social, environmental, economic and technological upgrading



SHOPPIN .

Smart manufacturing and service technologies & Data processing technologies

TECHNOLOGY AND

INNOVATION REPORT 2023

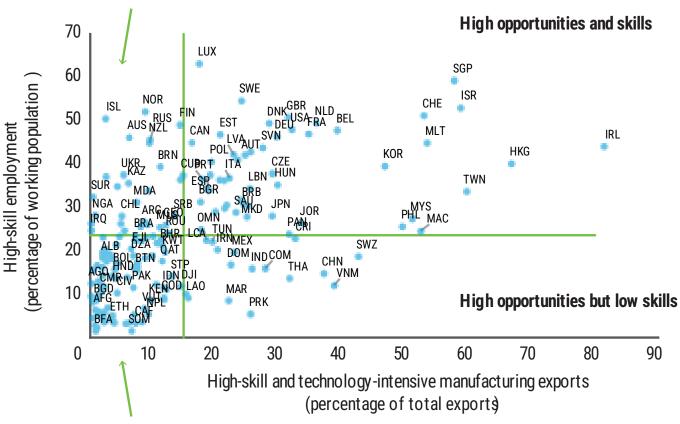
Big data	Big data refers to datasets whose size or type is beyond the ability of traditional databases to capture, manage and process. Big data also refers to the used of traditionally inaccessible or unusable data for making decisions.
Artificial intelligence (AI)	Al is normally defined as the capability of a machine to engage in cognitive activities typically performed by the human brain. Al is already widely used for applications that focus on narrow tasks, such as recommending what to buy online, spotting spam or detecting credit card fraud.

Greener relationships along the value chain

Five types of GVC governance

Туре	Description
Market	This type has a low degree of explicit coordination and power asymmetry.
	Market linkages do not have to be completely transitory, as is typical of spot markets; they can persist over time, with repeat transactions. The essential point is that the costs of switching to new partners are low for both parties.
Modular	Typically, suppliers in modular value chains make products to a customer's specifications, which may be more or less detailed. Often, 'turn-key services' suppliers take full responsibility for competencies surrounding process technology, use generic machinery that limits transaction-specific investments, and make capital outlays for components and materials on behalf of customers.
Relational	In these GVCs, interactions between buyers and sellers are complex, which often creates mutual dependence and high levels of asset specificity. This may be managed through reputation or more trust-based ties. Spatial proximity may support relational value chain linkages, but trust and reputation might well function in spatially dispersed networks where relationships are built up over time. This type has an intermediate degree of explicit coordination and power asymmetry.
Captive	In these networks, small suppliers are transactionally dependent on much larger buyers. Suppliers face significant switching costs and are, therefore, 'captive'. Such networks typically have a high degree of monitoring and control by a lead firm.
Hierarchy	This governance form involves vertical integration. The dominant form of governance is managerial control, flowing from managers to subordinates, or from headquarters to subsidiaries and affiliates. This type has a high degree of explicit coordination and power asymmetry.

Voluntary sustainability standards



OPENING GREEN WINDOWS Technological opportunities for a low-carbon world

Challenge: Low level of existing technological and innovative capacities

Readiness to benefit from the diffusion of Industry 4.0

High skills but low opportunities

Low opportunities and skills

Creating a twin transition

Aligning digital and green strategies

Developing digital infrastructure

Building digital skills

Building international partnerships

Setting standards and regulations

Providing financial support

Conclusion

Technologies already exist

Political will needed

Developing countries should catch the green technological revolution early

For more information about UNCTAD's work on Science, technology and innovation

Welcome to the United Nations Conference on Trade and Development

Science, technology and innovation

We help countries harness science, technology and innovation to make breakthroughs, create jobs and accelerate sustainable development.

United Nations Commission on Science and Technology for Development

Thank you!

